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An analysis of the layer-displacement fluctuations in thin smectic- 4 liquid-crystal films is presented.
Explicit formulas for the displacement-displacement correlation function, taking into account the sur-
face tension and the anchoring strength, are derived. It is shown that the boundary conditions essential-
ly affect the fluctuations not only on the surface but in the interior of the film as well. The light scatter-
ing on the displacement-associated director fluctuations is considered. This consideration is carried out
on the basis of the Green’s function of the electromagnetic field for an optically anisotropic film. The
calculations include multiple-reflection effects for incident and scattered light beams. It is shown that
the scattered light intensity differs essentially from the intensity for the same volume in an infinite smec-
tic medium. There is no forward scattering in the case of normal incidence and an undulation behavior
of the intensity as a function of scattering angle takes place. There are maxima in the angular distribu-
tion. The magnitudes of the maxima are sensitive to the surface-tension coefficient. The possibility of
measuring the surface-tension coefficient by means of an optical experiment is discussed.

PACS number(s): 61.30.Eb, 68.15.+e¢, 61.30.Gd, 78.20.Dj

I. INTRODUCTION

Light-scattering methods are widely used in liquid-
crystal studies. But due to thermodynamical and optical
differences it is necessary to carry out the theoretical
analysis for each liquid-crystal type separately. This pa-
per is devoted to smectic liquid crystals. Smectic liquid
crystals are characterized by the long-range orientational
order of the elongated molecules, which in addition are
partially segregated into layers. A smectic liquid crystal
may be described as a system with one-dimensional
translational ordering. Long-range translational order in
such a system is destroyed by thermal fluctuations [1].
Strong thermal fluctuations lead to characteristic features
of the light scattering, which were first detected by Ribot-
ta, Salin, and Durand [2]. Physical properties of smectic
finite-size systems, thin films in particular, arouse a lot of
interest. In this case surface phenomena such as surface
tension [3] and anchoring strength [4] must be taken into
account. The influence of the boundary conditions on the
displacement-displacement correlation function and the
x-ray scattering process was analyzed by Holyst, Tweet,
and Sorenson [5]. The analysis was carried out numeri-
cally on the basis of a discrete version of the free energy.
An analytical solution of this problem seems to be desir-
able. Another problem connected with the light scatter-
ing exists in the case of thin films. First, there are ordi-
nary and extraordinary electromagnetic waves in film, be-
cause the smectic- 4 phase is optically uniaxial medium,
so scattering of waves of one type into waves of another
takes place. Secondly, an incident and the scattered
beams are multiply reflected from interfaces. These opti-
cal phenomena must be taken into account in the theory
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because they are able to affect essentially experimental
data.

The outline of this paper is as follows. In Sec. II we
discuss the fluctuations and correlation function and
their dependence on smectic elastic constants, the surface
tension and the anchoring strength; explicit expression
for the displacement-displacement correlation function in
the case of the smectic- 4 film is presented. Section III is
devoted to the light scattering. In Sec. III A the fluctua-
tions of the dielectric tensor are considered and the prob-
lem of light scattering in smectic films is formulated. In
Sec. III B the incident field in the interior of the film in
the case of normal incidence is calculated. Section III C
is devoted to the Green’s function for an optically aniso-
tropic film; multiple-reflection effect is analyzed. In Sec.
IIID we derive an expression for the intensity for light
scattering in smectic- 4 film and the angular distribution
of the intensity is analyzed. In Sec. IV we summarize the
results obtained, discuss briefly a case of oblique in-
cidence, and consider the possibility of measuring the
surface tension coefficient by means of optical experi-
ment.

II. THE FREE ENERGY AND THE FLUCTUATIONS
IN A SMECTIC- 4 FILM

We consider a homeotropic aligned smectic film with
thickness L. Let the film be confined between the planes
z==%L /2 in the Cartesian coordinate system. The pa-
rameter which describes a deformation of a smectic liquid
crystal is the layer displacement u (r) along the z axis. It
is known that this parameter is a hydrodynamical one [6]
and its fluctuations disperse slowly. Apart from the layer
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structure there is a direction of the preferred molecular
alignment n (the director) in the smectic liquid crystal.
There are different types of smectic phases which are
classified by the director orientation with respect to the
layers. We will consider the smectic-A phase, i.e., as-
sume the director to be normal to the layers. In this case
the displacement gradients of the director fluctuation
8n(r) are equal to —V u (r), where V| is the gradient in
x,y variables. To describe the fluctuations we start from
the expression for the free energy F, which is a sum of the
bulk Fy,, and the surface E ¢ terms. The bulk contri-
bution is equal to [7]

Fou=1 [d*r{B[3,u(r,2)P+K [Au(r,2)]} . (1)
Here B is the smectic elastic constant associated with the
layer compressions, K is the elastic constant associated
with the layer undulations, and A, is the Laplacian in x,y
variables. The integration is carried out over the volume
V of the sample. The surface term depends on the
sample’s environment. First, there is a contribution in-
duced by the surface tension [5]

Fsurf:%fdzrl’y[vj_u(r)]z > (2)
where the integration is carried out over the sample sur-
face and y is the surface tension coefficient. This term
describes the additional energy cost associated with in-
creasing of the surface area. Secondly, if the smectic film
is not freely suspended, there may be anchoring on the
surface. Usually the surface anchoring is described by
the Rapini potential [4] L1 Wsin?(¢), where W), is the an-
choring strength and ¢ is the angle between the direction
n and the surface normal. For small ¢ the potential is
equal to T W[V, u (r)]?. It is easy to notice that the an-
choring term only changes the surface tension coefficient
v. So we will not introduce the additional term, connect-
ed with anchoring. Taking into account that the opposite
sides of the film may be set under different conditions in a
real experiment, we assume the surface z=L /2 to be
characterized by coefficient ¥, and the surface
z=—L /2 to be characterized by ¥ _. The surface con-
tribution to the free energy thus is given by

Fog=1[d? (v [Vu(r,L/2)]

+y_[Vu(r,—L/2)]*} . (3)

Our aim in this section is to calculate the layer-
displacement  correlation  function G (r,—r},z,z’)
=(u(r,z)u(r},z')). Here the statistical average { ) is
taken with respect to u (r), i.e.,

F

("')ZIDu"-exp 5T
B

/fDu exp

_F
kT
@)

where the free energy F is equal to a sum of expressions
(1) and (3).

The considered system is homogeneous in the xy plane,
so it is appropriate to take the Fourier transform with
respect to these variables,
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u(K,z)=fdzrleiix.rlu(rl,z) , (5)

where k is the wave vector in the xy plane. The free ener-
gy can be written as follows:
1
(27)?

where F, is the contribution of fluctuations with wave
vector k,

F=

[a*F,, (6)

F =1 fL/z dz[B|d,u (k,2)|*+ K«*u (k,z)|?]
2|J—Ln z

+i [y u e, +L/2)2+y _lule,—L/2)|?] | .

(7)
If the fluctuation u (k,z) satisfies the boundary conditions

aju(k, L /2)+0,u(k,=L/2)=0, (8)

where

_ Y+ 5
a,=—k",

£="7 )

then the contribution of the surface terms vanishes and
expression (7) transforms into a quadratic form

F.=1B fL/z dz u*(k,z) Au (k,z) , (10)
~L/2
with the operator
~ K
A:—ag-F;KA. an

One can prove that the operator A acting on the func-
tions which satisfy the boundary conditions (8) is a self-
adjoint one [8]. Thus there are eigenvalues A, (k) and
eigenfunctions f,,(k,z) (fluctuation modes) which com-
pose a basis. It should be noted that utilization of the
boundary conditions (8) does not imply any restrictions
on our consideration of fluctuations, because any func-
tion u (r) can be expanded in terms of f,, (k).

According to the equipartition theorem the correlation
function G (k,z,z') is given by

ksT
G(K,z,z')=T2 A N fon (,2) f X (k,2") (12)

The eigenvalues A, (k) can be calculated only numerical-
ly and it is very difficult to analyze this expression analyt-
ically. A more effective approach is to use the discrete
version for free energy [5]. This method reduces the
problem to a simple N X N matrix inversion, where N is
the number of layers in the smectic film. But this prob-
lem can be solved analytically.

As one can see from Eq. (12) the correlation function in
(k,z,z") representation must satisfy the equation

kyT
(g2—a§)G(K,z,z')=%a(z -z, (13a)

where
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g=VK/B«k*. (13b) To satisfy the conditions (14) we must choose u.(z)
which satisfy similar boundary conditions,
The associated boundary conditions are
a+G(x,£L /2,2')+3,G (k,£L /2,2')=0 . (14) asuy |[+L |+o,u, |[+L£ |=0. (16)
- 2 - 2
When z is not equal to z' we get zero in the right part of
Eq. (13a) with the well-known solutions. The solution of The required functions are
this main problem can be expressed through the solutions
u  (z) and u _(z) of Eq. (13a) with zero in the right part L
[9], u,(z)=(gFaylexp |g z?—z—
G (k,2,2") fT
K,z,z')=
Blu,0,u_—u_9,u,] +(gtailexp | —g z?—é—” . (17)
u (2u_(z") ifz>z'
X o , (15) :
(2uy(z') fz<z'. Using Egs. (17) and (15), we have
1
' kB T 2 ’ . ’
G(k,z,z")= 3BgA {(g°—a a_)cosh[g(z+z")]+g(a_—a, )sinh[g(z +z")]
+[(g?+a,a_)cosh(gL)+g(a_ +a_ )sinh(gL)]cosh[g (z —z')]—Asinh(g|z —z'|)} , (18a)
f
where lation function in q representation [7]
A=(g?+a_ a_)sinh(gL)+g(a_ +a_)cosh(gL) . (18b) Glq)= /:BT . 21
It should be mentioned that the expansion of G given by Kx'+Bq,
Eq. (18) as a meromorphic function of g to a sum of sim- where q=(x,q, ).

ple fractions yields a formula like Eq. (12). The function
G has singularities at the points where A=0. The points
can be found only numerically in general, but if the sur-
face tension coefficient is equal to zero or infinity, the ex-
pansion can be carried out analytically. For example,
when y , =y _ =0 (film with negligibly small surface ten-
sion) the singularity points are g,, =iwm /L and we get

G(k,z,z')= ks T 2L 3 .
- BL g2 mao (L)*+(mm)?
Tmz
X cos 3
Xcos |22 J (19)

It is easy to notice that expressions (18) reduce to those
for the infinite smectic film when thickness L is large,

G( )= ks T (
K,z2,2')= 22 Bexp

Continuous Fourier transform of Eq. (20) with respect to
z —z' leads us to the well-known expression for the corre-

—glz—2z']) . 20

The distinction of this kind of smectic film is that the
displacement fluctuation goes Goldstone type for any
finite anchoring strength and surface tension. Indeed, ex-
pression (18) has a singularity at the point k=0 if Yy are
finite. But the director fluctuations are not of the same
type due to the coefficient « in the relation
on(k,z)= —iku(k,z).

A mean-square fluctuation at the point with coordinate
z can be calculated using the expression

[ d*G (k,z,2) . (22)

(u(r,z)u(r,z'))=

(2m)?

The integral in Eq. (22) diverges at the upper and lower
limits of k. The divergence at the short-wavelength limit
arises since the theory is not valid for distances less than
a molecular diameter a,, so one must introduce the cutoff
parameter 2m/a,. The divergence at the long-
wavelength limit is connected with the Landau-Peierls in-
stability, hence another cutoff parameter 27/l appears
with / being the transverse size of the film. Thus the lim-
its in this integral are 27/l <k <2mw/a,. For example,
the mean-square displacement in the case of a freely
suspended film with y _ =7, =y can be written as

1
éz 2(1—7?)e écosh(a&)+(1+7)*+(1—n)% %
,2)|? , (23a)
Culrp2lH =32 V—_f a& EL(1+n)2—(1—n)% *] ’
and in a case of one hard boundary (y ., =y,y _ =) as
koT I3 — Ela—1) __ 2¢& —,—&lat+1)
(ur,2) Py =——2 [ Zggtl=n)e ) ty)ize L, (23b)
87V'KB E[l1+n+(1—nle %]
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where the dimensionless variables used are

172 2
=Y  a=22 -7 |K 27
"=Uxg L b B 1|
K 12 5 2
T
:L —_ —_
&2 B ag

The variation of the mean-square fluctuation with the z
coordinate is presented in Fig. 1. The calculation has
been carried out on the basis of Egs. (23). Figure 1(a) cor-
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FIG. 1. The mean-square displacement fluctuation profile vs
coordinate z for a 61-layer-thick film; k3 T=4.0X 10" ergs;
B =2.5X10" dyn/cm?, K =1.0X 10~ dyn are the smectic elas-
tic constants, and ¥ is the surface tension coefficient; (1) y =3
dyn/cm, (2) y=5 dyn/cm, and (3) y =30 dyn/cm. Graph (a)
corresponds to the case of a freely suspended film with the same
surface tension coefficient ¥ on the both sides. Graph (b) corre-
sponds to the case when the fluctuations on one boundary are
fully frozen but another boundary is characterized by coefficient

Y.

responds to the case of a freely suspended film with the
same surface tension coefficient ¥ on both sides. Figure
1(b) corresponds to the case when the fluctuations at one
boundary are fully frozen (hard boundary) but the other
boundary is characterized by coefficient y. We chose a
film containing 61 layers and the cutoff parameters a,
and [ being equal to 4 and 4X 10* A, respectively, in or-
der to compare the results to those obtained through the
numerical routine in [5]. The calculations were per-
formed assuming for kz T =4.0X 10~ '* ergs and typical
smectic parameters K = 107% dyn, B=2.5X10’
dyn/cmz, and several values of ¥. The comparison shows
that the expressions presented above and the model of the
discrete layers give similar results. It is seen from Fig.
1(a) that in systems with small surface tension the fluc-
tuations on the surface are in fact larger than those in the
interior of the system. Then the particular value of y can
be estimated from Eq. (23a). The sign of the first term in
the integral depends on the correlation between 1 and 7%
When y < VKB the fluctuations at the surface are larger
than in the interior. If y =V KB then the mean-square
fluctuation does not depend on z.

III. LIGHT SCATTERING

A. Fluctuations of the dielectric tensor
and light-scattering process

In order to analyze the influence of the surface phe-
nomena on a light-scattering process let us consider the
dielectric tensor €,45(r). Due to an optical anisotropy it
can be written in the following form:

€8)=¢€ny(r)nglr)+e [8,5—n,(r)ng(r)], (24)

where €, and €, are the permittivities along and trans-
verse to n. Displacement u (r) leads, first, to a fluctua-
tion of the director dn(r)=—V, u(r;,z) and second to a
fluctuation of €, and €|, because they depend on the den-
sity. The contribution to the light-scattering intensity
from the second type of fluctuations is negligible com-
pared with the first one [10]. So we assume the fluctua-
tion of the dielectric tensor is given by

8€,51)=€,[n58ng(r)+nRdn,(1)], (25)

where €,=¢€,—¢€,.

Since characteristic frequency of the fluctuations is
much less than the angular frequency o of light, we as-
sume that the incident and scattered waves have the same
frequency and vary with time as e ~'“’. An incident wave
with amplitude E'™ creates electric field with amplitude
E%r) in the interior of the film. Due to multiple-
reflection effect this field in general consists of four waves
(two ordinary and two extraordinary), which propagate
in different directions. These four coherent waves are
scattered by the random inhomogeneities 8é(r). The
scattered light after multiple reflections at the boundaries
z ==L /2 and refraction at one boundary produces the
field with complex amplitude E’(r) outside the film. The
intensity and the polarization of the scattered light are
completely described in terms of correlation function
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(E;(r)Eb*(r)), which can be calculated in the Born ap-
proximation [11]

’ 1% —_ Cl)4 3.0 73,1 ’ ’
(E(r)Ey (r))—?f d*r'd3 " Ty (@,1,—1,2,2")

XTh(o,r,—r1),2,2")
X (8e€,,(r')8€,,(1"))
XEp(r')EX*(r") , (26)

where c is the velocity of light and the integration is car-
ried out over illuminated volume ¥V, and T is the Green’s
function. Thus in order to study the light-scattering pro-
cess we should calculate the incident electric field in the
interior of the film and the Green’s function.

B. The incident field
in the interior of the film

To simplify our calculation we restrict ourselves
to the case of normal incidence and assume the incident
wave to be polarized in the xz plane, _ie.,
E"=E"%, exp[iko(z +L/2)], where ky=wV €y/c
(€9=1 for air). Only two ordinary waves with polariza-
tion vector e, and wave number k,, =V €, /c, but pass-
ing in opposite directions, are produced in this case. The
complex amplitude of electric field in all the regions can
be written as follows:

Eexp |ikg z—% l ifz<% ,
inc . . . L
E™[d,explik,z)+d exp(—ik,z)] if |z] <5
E™exp |ik, [z-l—%l +E exp | —ikg z+§
ifz<—L

2

where subscripts T and | indicate the propagation direc-
tions of the waves. The coefficients d; and d | have to be
determined. By utilizing standard electromagnetic condi-
tions at z =xL /2, we get four equations,

E,=E'™ d,exp iktr% +d exp _iktr% ,
E°+E,=E™ |d,exp —ikt,g +d exp ikt% ,
koE =k E™ d exp iktr% —d exp —ikt,—g ],
ko(E™—E )=k, E™ ldTexp —iktrg

—d exp ik"%

The first pair of equations provides for the continuity of

the tangential with respect to the surface components of
vector E, the other one provides for the continuity of the
same components of magnetic field. These equations give

2ko(ky +kolexp( —ik L /2)
(ki +ko)2exp( —ik L)—(k,, —kg)?explik, L) ’
(27a)

d,=

_ 2ko(ky —kolexplik L /2)
(ky +ko)?exp( —ik, L)—(k, —kg)?explik, L)
27b)

d,

Thus the amplitude of the electric field in the interior of
the film in the case of normal incidence is

E%r)=E"™e, [d exp(ik,z)+d exp(—ik,z)] . (28)

C. Green’s function

The system has translational-invariance symmetry
parallel to the surfaces, so the Green’s function depends
ont—t',r,—r}, z and z’ and satisfies the equation
t; —t',r,—r1},2,2")

1 32
VXV X+ tzé‘(r)

o ar?

=78(r—r")8(t —1t'), (29)
where T is the identity matrix and tensor € is given by
€005 if |z| > L /2

Caplr) = Lu"gnoﬁ"'el(saﬁ—”g"%) if [zl <L /2 . e

Due to the causality principle this function is equal to
zero when ¢ is less than t’. According to Eq. (26) we must
calculate the Green’s function in (w,r,—r},z,z’') repre-
sentation for |z'| <L /2. It is convenient to calculate it in
(w,K,2,z") representation

?(w,x,z,z’)=fd2rlfdt el TP (tr,2,2')  (31)

and then to complete inverse Fourier transform in the xy
plane. It should be noted that due to the causality princi-
ple one can take the limit w=w+i0 in Eq. (31), which al-
lows one to carry our integration if singularities take
place.

We will find the Green’s function f"(w,x,z,z') in the
following form:

2
T plo,x,22)=3 A ("’)eg"”eg’”
=1

Xexpli(k3—«®)V* oz —L/2)]
(32a)
if |z| > L /2, and
T plw,K,2,2" )= T'Q(w,K,2,2")

2 . . . .
+ 3 B(J)ef{)e};/)exp[ikz(”z]
j==2

(32b)

if |z|>L /2. Here T'© is the Green’s function for an
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infinite optically uniaxial medium, while the other terms
being multiplied by exp(ik+r,) represent amplitudes of
plane waves with polarization e,/ in the exterior and
with efj) in the interior of the film, j =—2,—1,1,2. The
positive numbers j correspond to waves propagating in
the positive direction with respect to the z axis, the nega-
tive ones correspond to waves that propagate in the nega-
tive direction, and o is equal to sgn(z —z'). The indices
j=1,—1 are referred to amplitudes, wave vectors, and
polarization vectors of waves that polarized in the xy
plane and j=2,—2 are referred to characteristics of
waves with polarization in the kz plane. Wave vectors
k'? of the ordinary and extraordinary waves in the film
can be written as

k(i”=(x,i(kt2r—K2)1/2) ,

K2 =(k, +(k Sk ) k2 —K®)?),

(33a)
(33b)

where k,,=wel’?/c. The corresponding unit polarization
al I P g p

vectors e/ are given by [12]
(1 _[k*,n°%)
€ - |[k(i1)’n0]| 4 (34a)
(£2) 10 1(£2)
(£2) — [@k ,[Il ’k ]] (34b)

|[no,k(iZ)]I(k(iZ),éQk(iZ))l/z )

The expressions for wave vectors and for polarization

vectors e’/ in the case of an isotropic surrounding medi-

um with permittivity €, are given by similar formulas but

with €,5 replaced by €,8,5 and with k,;, k. replaced by
0-

One can see that the function in form (32) with arbi-
trary coefficients 4” and B satisfies Eq. (29) every-
where except boundaries due to the special choice of 7%,
The Green’s function for an infinite optically uniaxial
medium is discussed in detail in Ref. [12]. In order to ob-
tain T"(O)(w,x,z —z') it is convenient to take inverse
Fourier transform of the Green’s function in (w,k) repre-
sentation over k,. Applying the results of [12] and taking
into account the causality principle one can get
T(wkz —z")= 3 hYVexplilz —z'|k e ef?

i=12
— L 588z —2") (35)
k21 a3¥p3 ’

a
where
(1) — _ 1 __
2i(kE—xH)2
h(2)=_ Kz(k%r—kgl)_'_k:l
2ik 3k, (k3 —k3)12

and o =sgn(z —z').

We must find such coefficients 4” and B, which
satisfy boundary conditions at z ==L /2. It should be
noted that there is no wave type mixing, because the
director is normal to the boundaries, i.e., reflected and re-
fracted waves are polarized in the same plane as the in-
cident one. According to the Fresnel formulas, the
reflected and refracted wave amplitudes are proportional
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to the incident one. Let 7 and p"” denote Fresnel
coefficients for refracted and reflected waves, respective-
ly. In the case of incidence out of an optically uniaxial
medium they are given by [11]

p<¢1)=,lfz;k_TL’ T<tl)=_—2k“—— , (37a)
ki,—ky, ki =k,
p(iz):m
eokz + etrk 1z ’ (37b)
(2 2€iko €ucks

(k,@k) EOkz+6trk12 ’

where k, k;, and k; are the incident, refracted, and
reflected wave vectors, respectively. Their x,y com-
ponents are the same, while z components depend on the
type and propagation direction of the waves. Thus the
boundary conditions that determine the coefficients 4/
and BY (j=-—2,—1,1,2) can be expressed in terms of
p" and 7/ as follows:

A(m)z,r(m)lh(m)exp ikz(m) _12'__21
+B™exp ik;'"% ] (38a)

B(*m):p(m){ h(’")exp[ikz(’")(L —z’)]

+ B ™exp[ik!™L]} , (38b)
A(“m)=7.(m){h(m)exp ik %+Z’ H
(—m) : (m)L
+B exp |ik, ) ], (38¢c)
B =pm{ pmMexp[ik{™(L +z')]
+B " ™exp[ik,™L]} , (38d)

where m =1,2. This system of equations leads to the ex-
pressions

explik!{™z']+p'™exp[ik!™ (L —z')]

Bim=plmpm expl —ik™L]—p"™2exp[ik™L]
(39a)
A = Fmp (mleyr iké"”—g‘—
exp[ —ik{"™(L +z')]+p'™exp[ik{™z’']
exp[ —ik™L]—p'™2exp[ ik ™ L]
(39b)
The corresponding coefficients 4 and B with j =—m

are given by similar expressions but with z' replaced by
—z'.

We are interested in the Green’s function in real-space
representation when the point r’ is in the interior of the
film, while r is outside of it. According to Egs. (31) and
(32a) this function can be written as
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oz—L
2

Since the light-scattering process takes place in the interior of the film but the intensity is detected outside of it at the
large distances (compared with the wavelength of light), we can use in Eq. (26) the asymptotic expression for T instead
of the precise one. We assume that r=sR, where s is a unit vector, and R >> |r']. Carrying out the integration over «
in Eq. (40) by means of the stationary phase method, we get

— k0|sz|
2imR

2 o .
2 A(Uj)(x’zl)e'a(aj)e;;ﬂj) . (40)
j=1

1
(27

T p(o,1,—1},2,2")= ik(r,—r1))+i(k3—k?)1"?

9 deK exp

L
2

2 .
21 A(Uj)(kosl’zl)e;(lrj)egfj) , 41)
j=

T,plw,r,—1),2,2") exp |ikoR —iky |8, 1) +]s,|

where o =sgn(z —z'), s, and s, are the components of unit vector s, and e’’’ and e/’ are the polarization vectors (in sur-
rounding space and in the film, respectively) of waves of type j with wave vector (s ko, k). This Green’s function
takes into account the air-film interface effects and can be utilized when the optical axis in the optically uniaxial film is
normal to its surfaces.

D. The intensity
of the scattered light

According to Eq. (35) the scattered field in the far zone is a spherical wave but because R is much longer than the
wavelength, the field can be considered locally as a plane wave with wave vector kys,. Thus the intensity I at the point
r=Rs of the scattered waves at the point r=Rs is given by

€
= SO (B8 E*(r)) . 42)
87

We will calculate separately the intensity I‘? of waves polarized in the scattering plane and intensity 1 D of waves po-
larized in the xy plane. Applying Egs. (42), (26), and (41) we get

o*kls?
m= A 2mR7 R)zeg,""’)e‘}f""’fd3r’d3r"exp[—ikosl-(r'l—r'l')]A(””’)(kosl,z’)A("'”)*(kosl,z")
¢t
X(8671(r’)86u(r"))[dTexp(iktrz’)-i-dlexp(—iktrz’)][ Texp(—ikz')+d explik, z")],
(43)

where I, is the intensity of the incident light, m =1,2. The integration over r) —r}’ is Fourier transform of the correla-
tion function but integration over r}’ is reduced to multiplication by illuminated surface S. Using expressions (40) and
(39b) in Eq. (43) we get in the case of normal incidence

I(l):() ,
(44)
D= I Cs2s2 , Etko(kgst(ki —ki)+ky) ' 2_1_
T oSS 6 0 12 22 o Pexa(ik @IV 2 | L
kalktr(ka] kOs.l)(k’gk) 1 [P exp(lkz L)]
L2 L/2
X ' dz"G k , :, ”" _-k(2)L+ s (2) 'k(Z) ’
f_L/Zdz f_L/2 2"'G (kgs,z',z"" ) {exp] —ik,~'( oz')]+p'Pexplik,”oz']}
X[dexplik, z')+d exp( —ik,z')]{exp[ik!*(L +0z")]+pPexp[ —ik!Poz"]}
X {dtexplik, z')+d}exp(—ik,z")} ,
[
where due to exponential dependence of the correlation function

R G on z and z’. We note that there is no scattering of the
= 0" %a ordinary wave to the ordinary one in the smectic liquid

cY4mR)? crystal. The same situation takes place in an aligned
nematic liquid crystal [7].

The theory presented above takes into account the
€.koS| multiple-reflection effects for the incident and the scat-
(_k,_e";k—)’ V=SL, tered beams. Expression (44) together with Eq. (18) al-

lows one to calculate scattered light intensity measured
o ke 2 21 experimentally for arbitrary surface tensions y .
k; _‘k_(kal_slko) . We restrict ourselves to symmetric boundary condi-
al tions (¥ 4 =y _=v). Under such circumstances the fol-
All integrals in Eq. (44) can be calculated analytically lowing equalities are valid:

We also used the following relations:

e;2)=
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Gl(k,z',z")=G(x,2",2')=G(x,—2',—2") . (45)
Intensity of scattered light I 2) can be written as
72 2ekglsikdky —ky)+ka ]
1—[pPexp(ikPL) k& (kL —s2k3 )2,

al

I?=1,Cs2s2s2

X{ Wiky—0k{®, —ko+ok{)[|d 1>+ |p?d |21+ Wk, +0k®, —k,—ok{®)[|d, |*+|p?Pd|*]
+W(ky,+okiP, k,+ok*)pPexplik!¥L)d d} +c.c.]
+ Wk, —ok!P k,—ok?)pPexp(ik!?L)d d* +c.c.]
+ Wk, —ok®,k,+ok®)d,d} +p?’d,d? +c.c.]

+ Wik, +oki?, —ky,+okP)|d,1*+1d,[*)[pPexplikPL)+c.c.]} , (46)
where the function W(q’,q'') is defined by
1 pL2 L/2
Py — 2 ’ n,iq'z' +iq"z -
Wigqy=7 [ dz' [ dz"e G (skg,z',2") . 47

This function represents the fluctuation properties of smectic-4 film that manifest themselves in the light-scattering
process. This function possesses, similar to (45), symmetry properties

Wiq',q")=WI(q",q')=W(—q',—q"),
which were used in Eq. (46). Utilizing the expression for correlation function (18) and expressions for integrals

L/2 L2 i
f dz'f dz"e' 771" cosh(gz’' +gz'")
-L/2

—L/2
2 2 L L
— ’ " __ COS r__ Il)_ J— ( I+ ’I)___ sh( L)
(q12+g2)(q;12+g2) {(q q g ) (q q 2 Ccos q q 2 co b4
’ 72981 ’ ” L .
+g(q'+q")sin |(g'+q )7 sinh(gL) t , (48)
fL/z dz’fL/2 dz"'e'¥ " "sinh(gl|z' —z"|)
—L/2 —L/2
2 "2 2
=T 22 T 1 +? -f:2g sin (11'+¢I")£
(g"*+g*)qg"*+g*) q'+q 2
+g(g'—q" )sin (q’—q")% cosh(gL)+(q’q"+g2)cos[(q’—q”)]sinh(gL)], (49)
one can get the explicit formula for W,
kgT L
W(ql’qll): BL Z(a _+_g) __(ql+qll)(ag+qlqll)cos (q7+qll)?
+la(g’—q'q")+g(g*+q"+q"*+q'q")Isin <q’+q")§
’ " —gL 2 ) ' " L ’ A9 ’ " L
+4g(q'+q" e (a*+q'q" )cos |(¢'—q )7 —al(q'—q")sin |(¢g'—¢q )7
—_ — —2gL ’ " ot ’ " ___L_
2(a —g)e (g’ +q'" Nag —q'q" )cos (¢’ +q )2
2 Iy 2 ”2 "2 Iy : ’ " L
+[a(g®—q'q")—g(g*+q'*+q"*+q'q")]sin |(¢'+q )?

X{(q/_|_qu)(q:2+g2)(q::2+g2)[(a +g)2_e—2gL(a _g)Z]}—l , (50)
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where g (K /B)'/?s2k3, a =(y /B)s?k}

Formulas (50) and (46) describe the light-scattering
process in smectic- 4 film. In order to understand it we
will consider separately each term of Eq. (50). Assume o
to be equal to 1. It means that the point r, where the in-
tensity 7 (2) is studied, is above the film (z >0). The term
with coefficient |d; |? in the first term in braces is the con-
tribution to the intensity of scattering of wave with wave
vector e, k,, into the extraordinary one with wave vector
(sko,k\?). The term with coefficient |[p?'?d |? is the
contribution of wave with wave vector —e,k,, into one
with wave vector (sky, —k.?') and then reflected from the
bottom boundary (z =L /2). The term with coefficient
|d | |? in the second term of the expression in braces is the
contribution of scattering of wave with wave vector e, k,,
into one with (sky,k.?). The term with coefficient
|p'?d ;|2 in the same square brackets is the contribution
of scattering of wave with wave vector e,k, into one
with (sky, —k!?) and then reflected from the bottom
boundary. The other terms of Eq. (50) describe interfer-

]

kgT
)-——{ (a +g)[2g2—2ag +L(a+g)g;

Wig:, —a.)=73p

ence of the scattered waves with different wave vectors.
For example, the term with coefficient p(Z)de’i‘ corre-
sponds to interference of two scattered waves, one of
which reflected from a boundary, with wave vectors
(skg,k!?) and (sky, —k.?’). The main contribution to
the intensity is related with scattering of that wave which
propagates upward because |d | is less than |d;|. Ac-
cording to Eq. (27) the ratio |d | /|d | for typical permit-
tivities (ey=1,€,=3) is about 0.25.

To analyze the effects connected with the fluctuation
features we neglect now interface and anisotropy optical
effects. Assume Green’s function 7" to be one for the far
zone in an infinite isotropic medium with permittivity €,
and neglect the reflected incident wave in the interior
(dy=1,d=0). We get in this case

IY=1,Cs%*W(q,,—q,) , (51)

where q=kg(s,,s, —1) is the scattering vector. The func-
tion Wis reduced to the simpler expression

24+ g?)]+4ge “¢[(a?—gq2)cos(q,L)—2agq,sin(q,L)]

+(g —a)e %L[2ag +292+L(a —g)g?+g2]}

X {(g2+g2P[(a +g)*—e #Ha—g?)} 7",

where a and g are the same as in Eq. (50). Considering
the scattering process in the xz plane we also assume
s, =s, =sinf, where 0 is a scattering angle. So we can set

g, = —2kysin*(8/2), g=(K/B)"?*k}sin’0 ,
=(y /B)k}sin?0 .

(53)

It is seen that function W has singularity at the point
6=0. Applying expansions e ¢=1—gL +0(6%),
sin(g,L)=g,L +0(6°), and cos(q,L)=1+0(6*), one
can find that W increases as 6 2 if L is finite. Taking into
account the dependence of s; on the scattering angle, ac-
cording to Eq. (51), we get that the intensity I'? de-
creases as 62 when angle 6 vanishes. Rather different an-
gular dependence takes place if the thickness L is infinite.
Expression (52) for infinite sample evolves to

(52)

—

so we get the well-known [7] expression for the intensity
I,

kyT
I?=1,Css2—2 (55a)

" Kq}+Bg;

per the same illuminated volume, where q=(q,q,) is the
scattering vector. As distinct from the intensity in the
film case this value remains finite when the scattering an-
gle vanishes. Thus the fact that there is no forward
scattering in a film is a pure finite-size effect.

To analyze the angular dependence let us consider sep-
arately the case of ¥y . =y _=0 in more detail. We can
apply expansion (19) of the correlation function to the

koT sum of modes. The use of Eq. (19) in Eq. (47) gives the
Wiq,, —q )=———B——— (54) i
z z B(g2+q2) ’ eXpI‘eSSlon
‘ J
2k T L
(2) = B~ 2.2 oL

1'“'=I1,C BL? s8% 2077 sin® |g; )

ey 1 sin[(7m —¢q!PL)/2]  sin[(7m +¢\¥L)/2] (55b)
,,,2>0 (gL)*+ (rm)? mm —q>L mm +q>L ’

where q(z’ and g are the same as in Eq. (35). A main con-
tribution for thin film comes from the first term in the
braces. Due to the coefficient sin%(g,L /2) this contribu-
tion oscillates with the increasing of the scattering angle.

[

According to Eq. (55b) extrema must be at the points 6,,,
which satisfy the equation

mm —Lky(1—cos6,,) . (56)
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Odd numbers m correspond to maxima and even num-
bers correspond to minima. So, there are oscillations in
angular dependence and the positions of the extrema are
defined by correlation of the thickness and the wave-
length. It is seen that the frequency of the oscillations in-
creases with the thickness of the film. A similar situation
takes place when two waves, reflected from different in-
terfaces of a film, are interfering. Here we have no
reflections but only scattering in the film takes place.

We now apply the presented theory to consider a
dependence of the intensity on the thermodynamical and
optical parameters of the film. Curves, calculated for
films with various thickness (107 ¢m, 1073 cm, ) and
with the other parameters similar (B =2.5X 10’ dyn/cm,
K =10"% dyn, y=10 dyn/cm) and k,=10° cm™! are
presented in Fig. 2 to show dependence on the thickness
L. This calculation has been carried out on the basis of
Green’s function for an isotropic infinite medium, so it
does not take into account multiple-reflection and aniso-
tropical effects. The dashed line corresponds to intensity
in infinite sample per the same volume. It can be seen
that there is a gap at zero scattering angle, if L is a finite
value. A width of the gap decreases with increasing of L.
So, there is no gap in the case of an infinite sample.

To estimate the positions of the extrema let us apply
Eq. (55a), which is true only if the surface tension is equal
to zero. According to Eq. (56) we get 6,=14.4°
0;=25.1° for maxima and 6,=20.4°, §,=29.0° for mini-
ma, when L =102 cm. The same results show the curve
Fig. 2, which is plotted for y =10 dyn/cm. Thus the po-
sitions of the extrema depend slightly on ¥ and are pri-
marily determined by L and wavelength.
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FIG. 2. The intensity of the scattered light 1>’ vs the scatter-
ing angle 6. The calculation was carried out for the case of
scattering in the xz plane without taking into account interface
effects; ko=10° cm™!, y=10 dyn/cm, B =2.5X 107 dyn/cm?,
K=10"%dyn; (1) L=10"* cm, (2) L =103 cm, and (3) the
dashed curve corresponds to the intensity per the same volume
in an infinite sample.

A. N. SHALAGINOV AND V. P. ROMANOV 48

N
s}

1.00

arbitrary units)
o~ o
(o2} [0.9]
(@] o

©
>
o

Intensity

0.00

LIS L B S S B S L B B B |

0 50.00 100.00 150.00 200.00

Scattering angle (deg)

oyl o oceboo s b i)

o

FIG. 3. The intensity of the scattered light I'? vs the scatter-
ing angle 6. The calculation was carried out for the case of
scattering in the xz plane, taking into account interface effects
and optical anisotropy of the film; €,=3.3, €,=3.0, ko=10°
cm™!, L=10"* cm, B=2.5X 10" dyn/cm?, K =10"° dyn; (1)
¥ =10 dyn/cm, (2) y =30 dyn/cm, and (3) y =100 dyn/cm.

The curves in Fig. 3 show angular dependence when
interface effects take place. The calculation has been car-
ried out taking into account optical anisotropy and
multiple-reflection effects for the incident and scattered
beams. Film parameters have been assumed to be
L=10"* cm, E||:3.3, and €,=3.0, elastic constants K
and B are the same as for Fig. 2. In order to show the
dependence on surface tension y three values have been
chosen (y=10, 30, and 100 dyn/cm). It can be seen,
first, that the positions of the extrema differ from that of
the corresponding curve in Fig. 2. It occurs due to re-
fraction at the boundaries. There is undulation behavior
of the intensity as a function of & when 6> 7 /2 (back-
ward scattering). The origin of this behavior is connected
with reflection of forward scattered light from the inter-
face z =L /2 and scattering of the reflected incident wave
with amplitude Eqd | on small angles. It also can be seen
that the magnitudes of the peaks depend strongly on the
surface tension.

IV. DISCUSSION

The analysis presented involves a calculation of the
displacement-displacement correlation function for
smectic- A films including surface phenomena. The ex-
pressions for the case of unequal surface tension
coefficients describing the opposite sides of a film can be
applied to systems studied experimentally. It is shown
that the boundary conditions strongly affect the fluctua-
tions not only at the surface but in the interior of the film
as well. The explicit expressions presented for the
displacement-displacement correlation function can also
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be used for an analysis of x-ray scattering in smectic
liquid crystals.

The developed theory of the light-scattering process in
smectic- 4 films allows one to calculate the intensity mea-
sured experimentally. The interface and anisotropy opti-
cal effects are taken into account. The theory elucidates
two finite-size effects. First, there is no forward scatter-
ing in the case of normal incidence, whereas in the
infinite sample the scattering with scattering angle equal
to zero is stronger than that with any others. The width
of the gap at =0 in the variation of the intensity with 6
tends to zero when the thickness of the film increases.
Second, there is the undulation behavior of this variation.
This behavior keeps on when interface optical effects are
not taken into account, so it is not caused by reflections
from the boundaries. The origin of this behavior is con-
nected with the thermodynamical properties of smectic
liquid crystals. Indeed, smectic layers are practically in-
compressible, hence the random displacements of
different layers are well correlated in the direction normal
to layers. This gives rise to the interference of waves
scattered at points with the same xy but various z coordi-
nates. The increasing of the film thickness leads to an in-
crease in the frequency of the oscillations. The positions
of the extrema hardly depend on surface tension, but the
magnitudes of the peaks do.

Since the angular distribution of the scattered light is
sensitive to the surface tension coefficient, the latter can
be measured by means of the optical experiment. It is an
important result because smectic liquid crystals, because
of their elastic properties and extremely large viscosity,
are similar to solids, so the surface tension coefficient
cannot be measured by means of the traditional methods
available for liquids.

Although the formulas presented for the intensity are
valid for normal incidence, they allow one to understand
what happens in the case of oblique incidence. The
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description can be carried out in analogous fashion to the
one presented for normal incidence with the same
Green’s function and W, but with another dependence of
wave and polarization vectors on the scattering angle.
For example, if the incident wave outside the film is po-
larized in the plane normal to the incident plane, two or-
dinary waves are produced in the interior of the film.
Only extraordinary scattered waves are produced in this
case, so I'Y=0. Since the ordinary and extraordinary
wave numbers differ from each other, the scattering vec-
tor is not equal to zero for any scattering angle. Thus W
as a function of the scattering angle has no singularities.
A quite different situation takes place when the incident
wave outside the film is polarized in the incidence plane.
Two incident extraordinary waves are produced inside
the film. They are scattered into extraordinary as well as
ordinary waves, so both intensities I‘" and I'?’ are not
equal to zero in general. The function W for
extraordinary-ordinary light scattering goes finite for the
same reason, while for extraordinary-extraordinary light
scattering it is infinite when the scattering angle is equal
to zero. This function increases as 6 2 as 6 decreases.
Due to other angular-dependent coefficients in the ex-
pression for the intensity the last goes finite. The particu-
lar case when I'? tends to zero is the case of the normal
incidence considered in detail above.

We also note that the expression presented here for the
Green’s function can be applied to studies of arbitrary
films with optical axis normal to surfaces when multiple-
reflection effect and optical anisotropy are essential. It
can be modified easily for various interface conditions de-
pending on experimental setup by replacing Fresnel
coefficients 7/ and p'/ with appropriate ones in Eq. (38).

We hope that the analysis presented will be useful for
further experimental and theoretical studies of thin smec-
tic systems.
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